Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of particle morphology of ZnO buffer layer on the performance of organic solar cell devices

Identifieur interne : 000E26 ( Main/Repository ); précédent : 000E25; suivant : 000E27

Effects of particle morphology of ZnO buffer layer on the performance of organic solar cell devices

Auteurs : RBID : Pascal:13-0142209

Descripteurs français

English descriptors

Abstract

The performance of poly(3-hexyltheopene):[6,6]-phenyl C61-butyric acid methyl ester or P3HT:PCBM based organic solar cell (OSC) devices can be improved by adding an electron extraction layer of a wide band gap semiconducting material such as ZnO or TiO2 that facilitates the electron transport from the photo-active layer (P3HT:PCBM blend) to the top metal electrode (e.g. Al) and, at the same time, blocks holes from reaching the top electrode. Other factors that determine performance of the OSC devices include morphology, thickness and donor-acceptor ratio. In this study we investigated the effects of concentration and particle morphology (nanoparticle versus nanoflake) of ZnO electron extraction layer on the performance of the OSC devices with configuration ITO/PEDOT:PSS/P3HT:PCBM/ ZnO/Al. The concentration of ZnO nanoparticle or nanoflake solutions was varied from 0.5 to 20 mg/ml. A power conversion efficiency (PCE) of 3.08% was recorded from devices incorporating ZnO nanoflake electron extraction layer, whereas PCE of 2.37% was recorded from devices with ZnO nanoparticles as the electron extraction layer. The maximum PCE was obtained from a concentration of 0.5 mg/ml ZnO for both devices. The influence of the particle morphology and the concentration of the ZnO electron extraction layer on the general performance of the OSC devices is discussed in detail.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0142209

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effects of particle morphology of ZnO buffer layer on the performance of organic solar cell devices</title>
<author>
<name sortKey="Mbule, P S" uniqKey="Mbule P">P. S. Mbule</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, University of the Free State</s1>
<s2>Bloemfontein ZA9300</s2>
<s3>ZAF</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Afrique du Sud</country>
<wicri:noRegion>Bloemfontein ZA9300</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, T H" uniqKey="Kim T">T. H. Kim</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST)</s1>
<s2>Seoul 136-791</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kim, B S" uniqKey="Kim B">B. S. Kim</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST)</s1>
<s2>Seoul 136-791</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<placeName>
<settlement type="city">Séoul</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Swart, H C" uniqKey="Swart H">H. C. Swart</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, University of the Free State</s1>
<s2>Bloemfontein ZA9300</s2>
<s3>ZAF</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Afrique du Sud</country>
<wicri:noRegion>Bloemfontein ZA9300</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ntwaeaborwa, O M" uniqKey="Ntwaeaborwa O">O. M. Ntwaeaborwa</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, University of the Free State</s1>
<s2>Bloemfontein ZA9300</s2>
<s3>ZAF</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Afrique du Sud</country>
<wicri:noRegion>Bloemfontein ZA9300</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0142209</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0142209 INIST</idno>
<idno type="RBID">Pascal:13-0142209</idno>
<idno type="wicri:Area/Main/Corpus">000F95</idno>
<idno type="wicri:Area/Main/Repository">000E26</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active layer</term>
<term>Buffer layer</term>
<term>Butyric acid</term>
<term>Conversion rate</term>
<term>Energy conversion</term>
<term>Ester</term>
<term>Fullerene compounds</term>
<term>Indium oxide</term>
<term>Morphology</term>
<term>Nanoflake</term>
<term>Nanoparticle</term>
<term>Organic solar cells</term>
<term>Performance evaluation</term>
<term>Polymer blends</term>
<term>Styrenesulfonate polymer</term>
<term>Thickness</term>
<term>Thiophene derivative polymer</term>
<term>Tin addition</term>
<term>Titanium oxide</term>
<term>Wide band gap semiconductors</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Morphologie</term>
<term>Couche tampon</term>
<term>Evaluation performance</term>
<term>Cellule solaire organique</term>
<term>Couche active</term>
<term>Epaisseur</term>
<term>Nanoparticule</term>
<term>Addition étain</term>
<term>Conversion énergie</term>
<term>Taux conversion</term>
<term>Oxyde de zinc</term>
<term>Ester</term>
<term>Acide butyrique</term>
<term>Composé du fullerène</term>
<term>Thiophène dérivé polymère</term>
<term>Semiconducteur bande interdite large</term>
<term>Oxyde de titane</term>
<term>Oxyde d'indium</term>
<term>Styrènesulfonate polymère</term>
<term>Mélange polymère</term>
<term>ZnO</term>
<term>TiO2</term>
<term>ITO</term>
<term>Nanoflocon</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The performance of poly(3-hexyltheopene):[6,6]-phenyl C61-butyric acid methyl ester or P3HT:PCBM based organic solar cell (OSC) devices can be improved by adding an electron extraction layer of a wide band gap semiconducting material such as ZnO or TiO
<sub>2</sub>
that facilitates the electron transport from the photo-active layer (P3HT:PCBM blend) to the top metal electrode (e.g. Al) and, at the same time, blocks holes from reaching the top electrode. Other factors that determine performance of the OSC devices include morphology, thickness and donor-acceptor ratio. In this study we investigated the effects of concentration and particle morphology (nanoparticle versus nanoflake) of ZnO electron extraction layer on the performance of the OSC devices with configuration ITO/PEDOT:PSS/P3HT:PCBM/ ZnO/Al. The concentration of ZnO nanoparticle or nanoflake solutions was varied from 0.5 to 20 mg/ml. A power conversion efficiency (PCE) of 3.08% was recorded from devices incorporating ZnO nanoflake electron extraction layer, whereas PCE of 2.37% was recorded from devices with ZnO nanoparticles as the electron extraction layer. The maximum PCE was obtained from a concentration of 0.5 mg/ml ZnO for both devices. The influence of the particle morphology and the concentration of the ZnO electron extraction layer on the general performance of the OSC devices is discussed in detail.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>112</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effects of particle morphology of ZnO buffer layer on the performance of organic solar cell devices</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MBULE (P. S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KIM (T. H.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KIM (B. S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SWART (H. C.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>NTWAEABORWA (O. M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, University of the Free State</s1>
<s2>Bloemfontein ZA9300</s2>
<s3>ZAF</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST)</s1>
<s2>Seoul 136-791</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>6-12</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000500603500020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0142209</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The performance of poly(3-hexyltheopene):[6,6]-phenyl C61-butyric acid methyl ester or P3HT:PCBM based organic solar cell (OSC) devices can be improved by adding an electron extraction layer of a wide band gap semiconducting material such as ZnO or TiO
<sub>2</sub>
that facilitates the electron transport from the photo-active layer (P3HT:PCBM blend) to the top metal electrode (e.g. Al) and, at the same time, blocks holes from reaching the top electrode. Other factors that determine performance of the OSC devices include morphology, thickness and donor-acceptor ratio. In this study we investigated the effects of concentration and particle morphology (nanoparticle versus nanoflake) of ZnO electron extraction layer on the performance of the OSC devices with configuration ITO/PEDOT:PSS/P3HT:PCBM/ ZnO/Al. The concentration of ZnO nanoparticle or nanoflake solutions was varied from 0.5 to 20 mg/ml. A power conversion efficiency (PCE) of 3.08% was recorded from devices incorporating ZnO nanoflake electron extraction layer, whereas PCE of 2.37% was recorded from devices with ZnO nanoparticles as the electron extraction layer. The maximum PCE was obtained from a concentration of 0.5 mg/ml ZnO for both devices. The influence of the particle morphology and the concentration of the ZnO electron extraction layer on the general performance of the OSC devices is discussed in detail.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Morphologie</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Morphology</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Morfología</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Couche tampon</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Buffer layer</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Capa tampón</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Cellule solaire organique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Organic solar cells</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Couche active</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Active layer</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Capa activa</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Epaisseur</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Thickness</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Espesor</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Nanoparticule</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Nanoparticle</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Nanopartícula</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Conversion énergie</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Energy conversion</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Conversión energética</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Taux conversion</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Conversion rate</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Factor conversión</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Ester</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Ester</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Ester</s0>
<s5>23</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Acide butyrique</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Butyric acid</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Butírico ácido</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Composé du fullerène</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Fullerene compounds</s0>
<s5>25</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Thiophène dérivé polymère</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Thiophene derivative polymer</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Tiofeno derivado polímero</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Semiconducteur bande interdite large</s0>
<s5>27</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Wide band gap semiconductors</s0>
<s5>27</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Oxyde de titane</s0>
<s5>28</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Titanium oxide</s0>
<s5>28</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Titanio óxido</s0>
<s5>28</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Styrènesulfonate polymère</s0>
<s2>NK</s2>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Styrenesulfonate polymer</s0>
<s2>NK</s2>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Estireno sulfonato polímero</s0>
<s2>NK</s2>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Mélange polymère</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Polymer blends</s0>
<s5>31</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>TiO2</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Nanoflocon</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Nanoflake</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>112</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E26 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000E26 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0142209
   |texte=   Effects of particle morphology of ZnO buffer layer on the performance of organic solar cell devices
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024